The patterns of forest soil particulate and mineral associated organic carbon characteristics with latitude and soil depth across eastern China
-
Graphical Abstract
-
Abstract
Forest ecosystems function as the largest carbon (C) sink in terrestrial ecosystems, and nearly half of the C in forest ecosystems is stored in forest soils. However, the patterns of two main fractions of soil organic C, particulate organic C (POC) and mineral-associated organic C (MAOC), across various types of forest ecosystems remain unclear. In this study, soil samples were collected from depths of 0–100 cm at eight sites located between 18° and 48° north latitude in eastern China. The soil samples were then separated into particulate organic matter (POM) and mineral-associated organic matter (MAOM) based on particle size to analyze the distribution of C within each fraction. The results showed that the C stored as POC increased with latitude and decreased with soil depth. Specifically, 28.1%, 38.5% and 55.6% of C was stored as POC in the topsoil (0–30 cm) of tropical, subtropical and temperate forests, respectively, while 24.0%, 24.3% and 38.9% of C was stored as POC in the subsoil (30–100 cm) of the corresponding forests, respectively. MAOC experienced a higher degree of microbial processing (indicated by differences in δ13C, δ15N and C:N between POM and MAOM) than POC, with a more pronounced difference in microbial processing between MAOC and POC at lower latitudes than at higher latitudes. These findings contribute to a comprehensive understanding of the characteristics of forest SOC and offer potential strategies for enhancing forest C sequestration.
-
-