Editors-in-Chief:  Weilun Yin, Beijing Forestry University, China Klaus v. Gadow, University of Göttingen, Germany
Zichun Wang, Yaoxiang Li, Guangyu Wang, Zheyu Zhang, Ya Chen, Xiaoli Liu, Rundong Peng. Drivers of spatial structure in thinned forests[J]. Forest Ecosystems, 2024, 11(1): 100182. DOI: 10.1016/j.fecs.2024.100182
Citation: Zichun Wang, Yaoxiang Li, Guangyu Wang, Zheyu Zhang, Ya Chen, Xiaoli Liu, Rundong Peng. Drivers of spatial structure in thinned forests[J]. Forest Ecosystems, 2024, 11(1): 100182. DOI: 10.1016/j.fecs.2024.100182

Drivers of spatial structure in thinned forests

Funds: 

the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University LYGC202117

the China Scholarship Council (CSC) 202306600046

the Research and Development Plan of Applied Technology in Heilongjiang Province of China GA19C006

Research and Demonstration on Functional Improvement Technology of Forest Ecological Security Barrier in Heilongjiang Province GA21C030

More Information
  • Corresponding author:

    Yaoxiang Li, E-mail address: yaoxiangli@nefu.edu.cn (Y. Li)

  • Received Date: 24 January 2024
  • Rev Recd Date: 26 February 2024
  • Accepted Date: 27 February 2024
  • Available Online: 26 May 2024
  • Background 

    As is widely known, an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems. However, previous research on forest management has often overlooked the importance of structure-based.


    Aims 

    Our objectives were to define the direction of structure-based forest management. Subsequently, we investigated the relationships between forest structure and the regeneration, growth, and mortality of trees under different thinning treatments. Ultimately, the drivers of forest structural change were explored.


    Methods 

    On the basis of 92 sites selected from northeastern China, with different recovery time (from 1 to 15 years) and different thinning intensities (0–59.9%) since the last thinning. Principal component analysis (PCA) identified relationships among factors determining forest spatial structure. The structural equation model (SEM) was used to analyze the driving factors behind the changes in forest spatial structure after thinning.


    Results 

    Light thinning (0–20% trees removed) promoted forest regeneration, and heavy thinning (over 35% of trees removed) facilitated forest growth. However, only moderate thinning (20%–35% trees removed) created a reasonable spatial structure. While dead trees were clustered, and they were hardly affected by thinning intensity. Additionally, thinning intensity, recovery time, and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.


    Conclusion 

    Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures, which cultivates healthy and stable forests.


  • Ali, A., Sanaei, A., Li, M., Nalivan, O.A., Pour, M.J., Valipour, A., Karami, J., Aminpour, M., Kaboli, H., Askari, Y., 2020. Big-trees – energy mechanism underlies forest diversity and aboveground biomass. For. Ecol. Manag. 461, 117968. .
    Begehold, H., Rzanny, M., Winter, S., 2016. Patch patterns of lowland beech forests in a gradient of management intensity. For. Ecol. Manag. 360, 69–79. .
    Bettinger, P., Tang, M., 2015. Tree-level harvest optimization for structure-based forest management based on the species mingling index. Forests 6 (4), 1121–1144. .
    Blanchard, E., Birnbaum, P., Ibanez, T., Boutreux, T., Antin, C., Ploton, P., Vincent, G., Pouteau, R., Vandrot, H., Hequet, V., Barbier, N., Droissart, V., Sonke, B., Texier, N., Kamdem, N.G., Zebaze, D., Libalah, M., Couteron, P., 2016. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees (Berl.) 30 (6), 1953–1968. http://10.1007/s00468-016-1424-3.
    Bose, A.K., Weiskittel, A., Kuehne, C., Wagner, R.G., Turnblom, E., Burkhart, H.E., 2018. Does commercial thinning improve stand-level growth of the three most commercially important softwood forest types in North America? For. Ecol. Manag. 409, 683–693. .
    Brian, P., Mitchell, R.J., Stephen, P., Mike, B., Pu, M., 2003. Spatial distribution of overstory retention influences resources and growth of longleaf pine seedlings. Ecol. Appl. 13 (3), 674–686. .
    Burgess, T.I., Oliva, J., Sapsford, S.J., Sakalidis, M.L., Balocchi, F., Paap, T., 2022. Anthropogenic disturbances and the emergence of native diseases: a threat to forest health. Curr. For. Rep. 8 (2), 111–123. .
    Burrows, C.J., 1990. Processes of Vegetation Change. Springer, Dordrecht, pp. 359–419. .
    Busse, M., Gerrard, R., 2020. Thinning and burning effects on long-term litter accumulation and function in young Ponderosa pine Forests. For. Sci. 66 (6), 761–769. .
    Chanthorn, W., Hartig, F., Brockelman, W.Y., 2017. Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. For. Ecol. Manag. 404, 100–107. .
    Chen, L., Comita, L.S., Wright, S.J., Swenson, N.G., Zimmerman, J.K., Mi, X., Hao, Z., Ye, W., Hubbell, S.P., Kress, W.J., Uriarte, M., Thompson, J., Nytch, C.J., Wang, X., Lian, J., Ma, K., 2018. Forest tree neighborhoods are structured more by negative conspecific density dependence than by interactions among closely related species. Ecography 41 (7), 1114–1123. .
    Cordonnier, T., Kunstler, G., 2015. The Gini index brings asymmetric competition to light. Perspect. Plant Ecol. Evol. Systemat. 17 (2), 107–115. .
    Cunningham, S.C., Mac Nally, R., Baker, P.J., Cavagnaro, T.R., Beringer, J., Thomson, J.R., Thompson, R.M., 2015. Balancing the environmental benefits of reforestation in agricultural regions. Perspect. Plant Ecol. Evol. Systemat. 17 (4), 301–317. .
    Dong, L., Bettinger, P., Liu, Z., 2022. Optimizing neighborhood-based stand spatial structure: four cases of boreal forests. For. Ecol. Manag. 506, 119965. .
    Drake, P.L., Mendham, D.S., White, D.A., Ogden, G.N., 2009. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development. Tree Physiol. 29 (5), 663–674. .
    Forrester, D.I., Elms, S.R., Baker, T.G., 2013. Tree growth-competition relationships in thinned Eucalyptus plantations vary with stand structure and site quality. Eur. J. For. Res. 132 (2), 241–252. .
    Foster, D.R., 1988. Species and stand response to catastrophic wind in central New England. U.S.A. J. Ecol. 76 (1), 135–151. .
    Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V.K., Larsen, J.B., 2017. Spatial patterns of tree species in Suserup Skov–a semi-natural forest in Denmark. For. Ecol. Manag. 406, 391–401. .
    Grigg, A.H., Grant, C.D., 2009. Overstorey growth response to thinning, burning and fertiliser in 10–13-year-old rehabilitated jarrah (Eucalyptus marginata) forest after bauxite mining in south-western Australia. Aust. For. 72 (2), 80–86. .
    Han, H.-S., Kellogg, L.D., 2000. Damage characteristics in young Douglas-Fir stands from commercial thinning with four timber harvesting systems. West. J. Appl. Finance 15 (1), 27–33. .
    Hu, Y., Hui, G., 2015. How to describe the crowding degree of trees based on the relationship of neighboring trees. J. Beijing For. Univ. 37 (9), 1–8 (in Chinese).
    Hui, G., 2001. Measuring species spatial isolation in mixed forests. For. Res. 14, 23–27.
    Hui, G., Gadow, K. v., Albert, M., 1999. The neighbourhood pattern-a new structure parameter for describing distribution of forest tree position. Sci. Silvae Sin. 35, 37–42 (in Chinese).
    Hui, G., Gadow, K. v., Hu, Y., 2004a. The optimum standard angle of the uniform angle index. For. Res. 17 (6), 687–692.
    Hui, G., Hu, Y., Chen, B., Gadow, K. v., 2004b. Characterizing forest spatial distribution pattern with the mean value of uniform angle index. Acta Ecol. Sin. 24 (6), 1225–1229 (in Chinese).
    Hui, G., Zhang, L., Hu, Y., Wang, H., Zhang, G., 2016. Stand crowding degree and its application. J. Beijing For. Univ. 38 (10), 1–6 (in Chinese).
    Kweon, D., Comeau, P.G., 2019. Relationships between tree survival, stand structure and age in trembling aspen dominated stands. For. Ecol. Manag. 438, 114–122. .
    Lamonica, D., Pagel, J., Valdés-Correcher, E., Bert, D., Hampe, A., Schurr, F.M., 2020. Tree potential growth varies more than competition among spontaneously established forest stands of pedunculate oak (Quercus robur). Ann. For. Sci. 77 (3), 80. .
    Latham, P., Tappeiner, J., 2002. Response of old-growth conifers to reduction in stand density in western Oregon forests. Tree Physiol. 22 (2–3), 137–146. .
    Lei, X., Wang, W., Peng, C., 2009. Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can. J. For. Res. 39 (10), 1835–1847. .
    Leuschner, C., Backes, K., Hertel, D., Schipka, F., Schmitt, U., Terborg, O., Runge, M., 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For. Ecol. Manag. 149 (1), 33–46. .
    Li, Y., Hui, G., Zhao, Z., Hu, Y., 2012. The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest. J. Veg. Sci. 23 (6), 1180–1190. .
    Li, Y., Hui, G., Zhao, Z., Hu, Y., Ye, S., 2014. Spatial structural characteristics of three hardwood species in Korean pine broad-leaved forest—validating the bivariate distribution of structural parameters from the point of tree population. For. Ecol. Manag. 314, 17–25. .
    Lin, Y.C., Chang, L.W., Yang, K.C., Wang, H.H., Sun, I.F., 2011. Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia 165 (1), 175–184. .
    Liu, K.L., Chen, B.Y., Zhang, B., Wang, R.H., Wang, C.S., 2023. Understory vegetation diversity, soil properties and microbial community response to different thinning intensities in Cryptomeria japonica var. sinensis plantations. Front. Microbiol. 14, 1117384. .
    Liu, N., Wang, D., Guo, Q., 2021. Exploring the influence of large trees on temperate forest spatial structure from the angle of mingling. For. Ecol. Manag. 492, 119220. .
    Liu, P., Wang, W., Bai, Z., Guo, Z., Ren, W., Huang, J., Xu, Y., Yao, J., Ding, Y., Zang, R., 2020. Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China. For. Ecol. Manag. 467, 118167. .
    Liu, X., Liu, X., Skidmore, A., Garcia, C., 2017. Recovery of woody plant species richness in secondary forests in China: a meta-analysis. Sci. Rep. 7 (1), 10614.
    MacPhee, C., Kershaw, J.A., Weiskittel, A.R., Golding, J., Lavigne, M.B., 2018. Comparison of approaches for estimating individual tree height–diameter relationships in the Acadian forest region. Forestry 91 (1), 132–146. .
    Mainwaring, D.B., Ritóková a, G., Shaw, D.C., Brooks, R.K., Omdal, D.W., 2023. Site-level estimates of Douglas-fir foliage retention from climate, soil, and topographic variables. For. Ecol. Manag. 537, 20930. .
    Mäkinen, H., Isomäki, A., 2004. Thinning intensity and growth of Scots pine stands in Finland. For. Ecol. Manag. 201 (2), 311–325. .
    Miao, N., Xu, H., Moermond, T.C., Li, Y., Liu, S., 2018. Density-dependent and distance-dependent effects in a 60-ha tropical mountain rain forest in the Jianfengling mountains, Hainan Island, China: spatial pattern analysis. For. Ecol. Manag. 429, 226–232. .
    Missanjo, E., Kamanga-Thole, G., 2015. Effect of first thinning and pruning on the individual growth of Pinus patula tree species. J. For. Res. 26 (4), 827–831. http://10.1007/s11676-015-0104-2.
    Mitchell, S.J., 2013. Wind as a natural disturbance agent in forests: a synthesis. Forestry 86 (2), 147–157. .
    Moustakas, A., Evans, M.R., 2015. Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes. BMC Ecol. 15 (1), 6. .
    Murray, A.T., Church, R.L., 1995. Measuring the efficacy of adjacency constraint structure in forest planning models. Can. J. For. Res. 25 (9), 1416–1424. .
    Oladi, R., Pourtahmasi, K., Eckstein, D., Bräuning, A., 2011. Seasonal dynamics of wood formation in Oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hyrcanian forest, Iran. Trees (Berl.) 25 (3), 425–433. .
    Peng, P.-H., Pan, H.-L., Tang, S.-L., Chiu, C.-M., Chiang, H.-L., Zhan, Y.-X., Hsieh, Y.-T., Chen, J.-C., 2022. Effects of thinning on the growth and relative change in the diameter of a mahogany plantation. Forests 13 (2), 213. .
    Peterson, C.J., 2004. Within-stand variation in windthrow in southern boreal forests of Minnesota: is it predictable? Can. J. For. Res. 34 (2), 365–375. .
    Pommerening, A., 2002. Approaches to quantifying forest structures. Forestry 75 (3), 305–324. .
    Pommerening, A., 2006. Evaluating structural indices by reversing forest structural analysis. For. Ecol. Manag. 224 (3), 266–277. .
    Pommerening, A., Uria-Diez, J., 2017. Do large forest trees tend towards high species mingling? Ecol. Inf. 42, 139–147. .
    Pothier, D., Fortin, M., Auty, D., Delisle-Boulianne, S., Gagné, L.-V., Achim, A., 2013. Improving tree selection for partial cutting through joint probability modelling of tree vigor and quality. Can. J. For. Res. 43 (3), 288–298. .
    Qiu, H., Zhang, H., Lei, K., Hu, X., Yang, T., Jiang, X., 2023. A new tree-level Multi-Objective forest harvest model (MO-PSO): integrating neighborhood indices and PSO algorithm to improve the optimization effect of spatial structure. Forests 14 (3), 441. .
    Rupšys, P., Petrauskas, E., 2017. A linkage among tree diameter, height, crown base height, and crown width 4-variate distribution and their growth models: a 4-variate diffusion process approach. Forests 8 (12), 479. .
    Schaberg, P.G., DeHayes, D.H., Hawley, G.J., Nijensohn, S.E., 2008. Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For. Ecol. Manag. 256 (5), 855–862. .
    Slik, J.W.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., Collins, M., Dauby, G., Ding, Y., Doucet, J.-L., Eler, E., Ferreira, L., Forshed, O., Fredriksson, G., Gillet, J.-F., Harris, D., Leal, M., Laumonier, Y., Malhi, Y., Mansor, A., Martin, E., Miyamoto, K., Araujo-Murakami, A., Nagamasu, H., Nilus, R., Nurtjahya, E., Oliveira, A., Onrizal, O., Parada-Gutierrez, Á., Permana, A., Poorter, L., Poulsen, J., Ramirez-Angulo, H., Reitsma, J., Rovero, F., Rozak, A., Sheil, D., Silva-Espejo, J., Silveira, M., Spironelo, W., ter Steege, H., Stevart, T., Navarro-Aguilar, G.E., Sunderland, T., Suzuki, E., Tang, J., Theilade, I., van der Heijden, G., van Valkenburg, J., Van Do, T., Vilanova, E., Vos, V., Wich, S., Wöll, H., Yoneda, T., Zang, R., Zhang, M.-G., Zweifel, N., 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecol. Biogeogr. 22 (12), 1261–1271. .
    Smith, A.M., Ramsay, P.M., 2018. A comparison of ground-based methods for estimating canopy closure for use in phenology research. Agric. For. Meteorol. 252, 18–26. .
    Sohn, J.A., Saha, S., Bauhus, J., 2016. Potential of forest thinning to mitigate drought stress: a meta-analysis. For. Ecol. Manag. 380, 261–273. .
    Stoneman, G.L., Schofield, N.J., 1989. Silviculture for water production in jarrah forest of Western Australia: an evaluation. For. Ecol. Manag. 27 (3), 273–293. .
    Stoneman, G.L., Turner, N.C., Dell, B., 1994. Leaf growth, photosynthesis and tissue water relations of greenhouse-grown Eucalyptus marginata seedlings in response to water deficits. Tree Physiol. 14 (6), 633–646. .
    Takahashi, K., 2010. Effects of altitude and competition on growth and mortality of the conifer Abies sachalinensis. Ecol. Res. 25 (4), 801–812. .
    Tang, J., Qi, Y., Xu, M., Misson, L., Goldstein, A.H., 2005. Forest thinning and soil respiration in a Ponderosa pine plantation in the Sierra Nevada. Tree Physiol. 25 (1), 57–66. .
    Thom, D., Taylor, A.R., Seidl, R., Thuiller, W., Wang, J., Robideau, M., Keeton, W.S., 2021. Forest structure, not climate, is the primary driver of functional diversity in northeastern North America. Sci. Total Environ. 762, 143070. .
    Uriarte, M., Canham, C.D., Thompson, J., Zimmerman, J.K., Brokaw, N., 2005. Seedling recruitment in a hurricane-driven tropical forest: light limitation, density-dependence and the spatial distribution of parent trees. J. Ecol. 93 (2), 291–304. .
    Walter, S.T., Maguire, C.C., 2004. Conifer response to three silvicultural treatments in the Oregon Coast Range foothills. Can. J. For. Res. 34 (9), 1967–1978. .
    Wan, P., Zhang, G., Wang, H., Zhao, Z., Hu, Y., Zhang, G., Hui, G., Liu, W., 2019. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecol. Inf. 50, 86–94. .
    Wang, M., Upadhyay, A., Zhang, L., 2010. Trivariate distribution modeling of tree diameter, height, and volume. For. Sci. 56 (3), 290–300. .
    Wang, Y., Yu, J., Xiao, L., Zhong, Z., Wang, Q., Wang, W., 2020. Dominant species abundance, vertical structure and plant diversity response to nature forest protection in northeastern China: conservation effects and implications. Forests 11 (3), 295. .
    Wang, Z., Li, Y., Meng, Y., Wang, C., 2021. Effect of tending and thinning on spatial and carbon distribution patterns of natural mixed broadlesf-conifer secondary forest in Xiaoxing'an Mountains, PR China. Appl. Ecol. Environ. Res. 19 (6), 4751–4764. .
    Wang, Z., Li, Y., Meng, Y., Wang, C., 2022. Responses of spatial distribution patterns and associations of Larix gmelinii and Populus davidiana mixed forests in Daxing'an Mountains to different tending thinning intensities. J. Cent. South Univ. For. Technol. 42, 75–83 (in Chinese).
    Ward, J.S., Parker, G.R., Ferrandino, F.J., 1996. Long-term spatial dynamics in an old-growth deciduous forest. For. Ecol. Manag. 83 (3), 189–202. .
    Ward, J.S., Wikle, J., 2019. Increased individual tree growth maintains stand volume growth after B-level thinning and crop-tree management in mature oak stands. For. Sci. 65 (6), 784–795. .
    Waring, K.M., O'Hara, K.L., 2005. Silvicultural strategies in forest ecosystems affected by introduced pests. For. Ecol. Manag. 209 (1), 27–41. .
    Wiegand, T., Moloney, K.A., 2004. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104 (2), 209–229. .
    Yuan, Z., Gazol, A., Wang, X., Xing, D., Lin, F., Bai, X., Zhao, Y., Li, B., Hao, Z., 2012. What happens below the canopy? Direct and indirect influences of the dominant species on forest vertical layers. Oikos 121 (7), 1145–1153. .
    Yücesan, Z., Özçelik, S., Oktan, E., 2015. Effects of thinning on stand structure and tree stability in an afforested oriental beech (Fagus orientalis Lipsky) stand in northeast Turkey. J. For. Res. 26 (1), 123–129. .
    Zhang, G., Hui, G., Zhang, G., Zhao, Z., Hu, Y., 2019. Telescope method for characterizing the spatial structure of a pine-oak mixed forest in the Xiaolong Mountains, China. Scand. J. For. Res. 34 (8), 751–762. https://doi.org/10.1080/ 02827581.2019.1680729.
    Zhang, X., Guan, D., Li, W., Sun, D., Jin, C., Yuan, F., Wang, A., Wu, J., 2018. The effects of forest thinning on soil carbon stocks and dynamics: a meta-analysis. For. Ecol. Manag. 429, 36–43. .
    Zhang, X., Wang, Z., Chhin, S., Wang, H., Duan, A., Zhang, J., 2020. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: long-term spacing trials in southern China. For. Ecol. Manag. 465, 118103. .
    Zhao, Z., Hui, G., 2021. Advances in structural diversity of stand structure. Sci. Silvae Sin. 56, 143–152 (in Chinese).
    Zhao, Z., Liu, W., Shi, X., Li, A., Guo, X., Zhang, G., Hui, G., 2015. Structure dynamic of Quercus aliena var. acuteserrata natural forest on Xiaolongshan. For. Res. 28 (6), 759–766.
    Zhou, C., Liu, D., Chen, K., Hu, X., Lei, X., Feng, L., Zhang, Y., Zhang, H., 2022. Spatial structure dynamics and maintenance of a natural mixed forest. Forests 13 (6), 888. .
    Zhou, D., Zhao, S.Q., Liu, S., Oeding, J., 2013. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 10 (6), 3691–3703. http://10.5194/bg-10-3691-2013.
  • Related Articles

    [1]Xue Du, Xiangdong Lei, Xiao He, Jie Lan, Hong Guo, Qigang Xu. Ecosystem service multifunctionality of mixed conifer-broad-leaved forests under climate change and forest management based on matrix growth modelling[J]. Forest Ecosystems, 2024, 11(1): 100231. DOI: 10.1016/j.fecs.2024.100231
    [2]Zhenghua Lian, Juan Wang, Chunyu Fan, Klaus von Gadow. Structure complexity is the primary driver of functional diversity in the temperate forests of northeastern China[J]. Forest Ecosystems, 2022, 9(1): 100048. DOI: 10.1016/j.fecs.2022.100048
    [3]Xiaobo Huang, Shuaifeng Li, Jianrong Su. Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China[J]. Forest Ecosystems, 2020, 7(1): 55-55. DOI: 10.1186/s40663-020-00267-8
    [4]Ashish K. MISHRA, Soumit K. BEHERA, Kripal SINGH, R. M. MISHRA, L. B. CHAUDHARY, Bajrang SINGH. Effect of abiotic factors on understory community structures in moist deciduous forests of northern India[J]. Forest Ecosystems, 2013, 15(4): 261-273. DOI: 10.1007/s11632-013-0407-3
    [5]Francesco CARBONE, Antonino SCARELLI, Zoltan VARGA. Mathematical modeling for evaluating gain of logging companies in the timber market[J]. Forest Ecosystems, 2013, 15(1): 41-48. DOI: 10.1007/s11632-013-0104-2
    [6]LI Suo, LUO You-qing, WU Jian, ZONG Shi-xiang, YAO Guo-long, LI Yuan, LIU Yuan-mei, ZHANG Yan-ru. Community structure and biodiversity in plantations and natural forests of seabuckthorn in southern Ningxia, China[J]. Forest Ecosystems, 2009, 11(1): 49-54. DOI: 10.1007/s11632-009-0008-3
    [7]Sun Hong-gang, Zhang Jian-guo, Duan Ai-guo, He Cai-yun. A review of stand basal area growth models[J]. Forest Ecosystems, 2007, 9(1): 85-94. DOI: 10.1007/s11632-007-0014-2
    [8]Xie Manhua, Zhao Guangjie. Structural Change of Wood Molecules and Chemorheological Behaviors during Chemical Treatment[J]. Forest Ecosystems, 2004, 6(3): 55-62.
    [9]Wang Dianpei, Ji Shuyi, Chen Feipeng, Peng Shaolin. Composition and Characteristics of Natural Secondary Forests in Shenzhen,South China[J]. Forest Ecosystems, 2004, 6(2): 6-11.
    [10]Niu Jianzhi, Gao Jiarong, Wang Fengyou. Landscape Structure Changes in Liangshui Nature Reserve, Northeast China[J]. Forest Ecosystems, 2003, 5(4): 31-36.

Catalog

    Article Metrics

    Article views (6) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return